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1 In troduc t ion  

Since the birth of abstract interpretation [Cousot 77, Cousot 81], many languages have been 

studied, and frameworks for their abstract interpretation have been proposed. The first lan- 

guages considered by the Cousots were very simple, procedureless, FORTRAN-like languages, 

and were used to set up the theory. The main characteristic of this class of languages is that 

there is a one to one correspondence between identifiers and locations. A store can therefore be 

represented as a vector of a space of finite dimension. Approximating a set of memory states 

at a given control point thus consists in finding an abstraction (i.e. a machine-representable 

lattice) of this vectorial space. 

New problems arise however when considering a language such as Pascal, which has nested 

procedures, call-by-reference and recursivity, for there can be many activations of the same 

procedure in the run-time stack, each activation having its own environment binding identifiers 

to different locations anywhere in the stack by means of the call-by-address parameter passing 

method. The problem is therefore not only to approximate the set of values of a fixed vector of 

variables, but to approximate sets of run-time stacks, each stack having its own aliasing structure 

and being of arbitrary height. 

The aim of this paper is to study Pascal-like languages, and to show that it is possible to 

design and prove abstract interpretations used to determine assertions about scalar variables, 

as was formerly done for simpler languages. We shall then talk about the implementation of a 

specific "semantic analyzer" of Pascal used to determine the value range of integer variables and 

give some examples of the results given by this analyser. 

*This work was supported by Esprit B.R.A., action 3124 ~S~mantique ~. 
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2 Methodology 

The language we are considering is basically pure Pascal  We do not consider procedural param- 

eters and jumps outside the current block. This is only for a simplicity purpose; "long jumps" 

can be handled in our framework and are actually implemented. Procedural parameters will be 

considered in another paper. 

The main idea behind our work is that the key problem in the abstract interpretation of 

Pascal is that  although the environment can bind identifiers to any location in the run-time 

stack, the only information needed to perform a safe abstract interpretation of the body of a 

procedure is the partition of its variables into sets of variables sharing the same location. An idea 

can thus be to bind all variables of a given procedure activation, sharing the same location in the 

stack, to a temporary location, allocated by the called procedure, to execute the procedure body 

in this new environment, and to update the actual location (using the value of the temporary 

at the end of the procedure) when returning from the call. This parameter passing method 

seems to be similar to the call-by-value-result method (also known as copy-restore linkage, or 

copy-in copy-out). It is well known however that call-by-reference and call-by-value-result are 

not equivalent. The originality of our scheme is that  the substitution from one parameter 

passing method to the other is dynamic. It cannot be done at compile time, unless an abstract 

interpretation is performed. This program transformation is illustrated in figure 1 by a program 

computing MacCarthy's  91 function, recursively defined by: 

z - l O  i f x > l O 0  

y(x) = f (y (x  + 11)) otherwise 

It can be shown by induction that f (x)  = x - 10 if x > 101 and f (x)  = 91 otherwise. 

Our semantic analyser has proven that z E [91, h i -  10] 1 at control point {2}, which is the 

best result that  can be expected using the integer range lattice. The main procedure has been 

duplicated three times: in procedure Ncl, the formal parameter r is a lexical alias of x and has 

been replaced by x, and in procedures Nc2 and Mc3, r is a "hidden" alias of t and r itself. It 

is noteworthy that  the induction process performed by our system automatically discovers the 

induction cases of the hand made proof. These cases define a finite sublattice I of the integer 

range lattice which enable an automatic proof of the program using the finite lattice I --* I .  

In order to define more precisely the program transformation we have presented and prove its 

correctness, we shall first define the operational semantics of a block structured language with 

nested procedures, call-by-value and call-by-address, and recursivity. Only the most important 

parts of the semantics will be defined, such as the stack structure, the address of an identifier and 

the procedure call semantics. We shall then define another semantics with a clean stack structure 

better suited to abstract interpretation and show that these two semantics are equivalent. At 

last, we shall define a general method for building safe approximations of stacks sets and show 

how these approximations can be tuned to get an abstract interpretation of the desired precision. 

1Where h i  = n a x i n t ,  and 1o = - a a x i n t  + 1 axe the upper and lower bounds of the PascM integer type. 
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program CallByAddress; 

vat  x : integer; 

p rocedure  Mc(n : integer; vat  r : integer); 

t : integer; 

begin 
if n > I00 then 

r := n- i0 
else begin 

Mc(n+ll,  t); 
Me(t, r) 

end 
end; 

begin 
{1} 

Mac(x, x); 
{2} 
end. 

program CallByValueResult; 
vat  x : integer; 
procedure  Mel(n : integer); 

vat  t : integer; 
begin { n e [lo, h,] } 

i f  n > 100 then  x := n-10 
e l s e  b e g i n  Mc2(n+ll, t); Mcl(t) end 

end; { z  e [91, h i - l O ] }  
procedure  Mc2(n : integer; inout  r : integer); 

vat  t : integer; 
b e g i n  { n  e [io+11,111]) 

i f  n > 100 t h e n  r := n-10 
e l s e  b e g i n  Me2(n+ll, t); Me3(t, r) end 

end; { r e [91,101] ) 
procedure  Me3(n : integer; inout  r : integer); 

vat  t : integer; 
begin { n  e [91,101]} 

i f  n > 100 t h e n  r := n-10 
e l s e  begin Me2(n+ll, t); Me3(t, r) end 

e n d  { r = 91 } 
begin 
{1} { z e [lo, h,] } 

Mcl(x) 
{2} {x • [91, hi-10]} 
end .  

Figure 1: MacCarthy's 91 function 

3 Def ini t ions  and notat ions  

The basic domains we shall use are Proc  (procedure names), Local (local and global variables), 

Value  (call-by-value formal parameters), Al ias  (call-by-address formal parameters). The do- 

main Iden~ = Local + Value  + Al ias  is thus the domain of variables and formal parameters. 

Note that  there are no constants in our language. The domain S V a l  = I n t e g e r  + Boolean  is 

the domain of scalar values. All names are built using a full "pathname" prefix in order to avoid 

conflicts, such as, for instance P r o g . F o o . B a r  if Bar  is defined within Foe.  The Proc  domain 

is thus a CPO, of infimum Prog ,  for the following partial order. 

Def in i t ion  1 Prog.P1 . . . . .  P~ < Prog.P~ . . . . .  P~, ¢=~ n < n' A Vk < n : Pk = P~ 

Def in i t ion  2 The most  closely nested procedure around procedure P = Prog.P1 . . . . .  Pn is noted 

P°  = Prog.P1 . . . . .  P,~-I. For a global procedure P ,  we define p .  = Prog.  We also note x ° the 

procedure in which the identifier x is defined (or Prog  i f  x is a global variable). 

Defin i t ion  3 We say that x = y i f  x ° = y°. I f  a variable x is defined in procedure P ,  i.e. 

i f  x ° = P ,  we also say that x = P .  I f  x is lexicaUy accessible to P ,  i.e. i f  x ° < P ,  we say 

(incorrectly) that x < P .  
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D e f i n i t i o n  4 For a set of  identifiers A, we say that A < P i f  : Vz E A, x < P,  and that A = P 

i f  : Vz E A, z -  P 

D e f i n i t i o n  5 Let $ : A --* B.  We note f*  : P ( A )  --* P ( B )  the pointwise extension of  f defined 

by : y*(S)  = { f ( s ) } , e s ,  and f l s  the restriction o f f  to S C_ A. Iy f * ( S )  = {x}, then the value x 

will be noted 7( S) .  A t  last, i f  A = Ax x . . .  x A ,  and X = ( z x , . . . ,  z,,) then: Vk E [1, n], Xtk = xk. 

We also need some notat ions in order to handle procedure calls. For a call from procedure 

P,~ to procedure P,~+t, and for a formal parameter  z of procedure P -+ I ,  we define 1I,+1 : 

Alias  + Value --, Iden t  + SVa l  by lI,~+l(z) = y if z is a call-by-address formal parameter  and 

the actual  parameter  is the identifier y, and 1I,~+1 (x) = v if x is a call-by-value formal parameter  

and the value of the corresponding argument is v. 

4 S t a n d a r d  o p e r a t i o n a l  s e m a n t i c s  

The specific domains used in the s tandard  operat ional  semantics are listed below. Note tha t  a 

context is local to its ac t iwt ion .  The domain Control  is the flat domain of the control points 

of procedure bodies. 

Stack  = Act* 

Act  = Proe x Control  x Contes t  

Contex t  = Store x R e f  

Store = 1dent --* SVa l±  

R e f  = Ident  --* Ident± 

For each stack 52. E Stack  of height n we use the notat ion ~ k  = (Pk, ck, (ak, Pk)), with k E [0, n]. 

D e f i n i t i o n  6 During a call of  procedure Pn+l from procedure Pn , the contest (o'n+l, Pn+I ) of 
the new activation appended to the stack is defined by : Vz = Pn+l 

O'n+l(Z ) = (ZE Value) --+ IIn+l(Z), .L 
u.+,(z) = ( s e R e ) )  -~ n.+,(=), ± 

otherwise a .+x(z )  = U .+ l ( z )  = ± .  

It is then clear tha t  the nature of an identifier x at  the level k in the stack is: 

• I f  p k ( z )  E Iden t  then z is a call-by-address formal parameter ,  and pk(z)  is the actual  

parameter  used in the call from Pk-1 to Pk. 

• If #k(x)  = .L then if ok(z)  E SVal ,  then z is either a local variable or a cMl-by-vaiue 

parameter ,  otherwise x is not defined in Pk. 

We define the function Address : 13[ x Iden t  -* (IN x lden t )±  giving the location of a variable 

in the stack by: 

A d d r e s s ( ( n , z ) )  = x ~ P , ,  ~ ( n = O )  --+ _L, Address ( (A(n ) , x ) ) ,  

z E R e f  --+ (n = O) --* £ ,  A d d r e s s ( ( n -  1,#n(x))) ,  

(n,=) 



311 

where A(k) is the access link, that  is the stack index of the most recent activation of P~: 

A(k) = m a x  {i e [0, k - 1] : P~ = I " ; }  

This access link is used to access non local variables on the stack, and is implicitly defined in 

our language for we do not allow procedural parameters 2. The lexical scope rule used in Pascal 

says that,  in order to be called by procedure Pk, procedure Pk+l must be accessible to Pk- A 

run-time stack must thus verify: Vk E [0~ n - 1] : P~+I < Pk. It can therefore be proven that 

the access hnk is well defined for any run-time stack. 

In order to access non local names on the stack, we also define the set £(n)  = {n, A(n), 

A2(n) , . . . ,  0} of the stack indexes corresponding to the activations of Pn and of its enclosing 

procedures 3. For any enclosing procedure P <_ Pn we can then define A(n, P)  as being the 

unique element in £(n)  such that  P = P^(n,P). 

The value of a variable x < Pn is now defined as V a l u e ( ~ ,  x) = ak(y), where {k, y) = 

Addrcss (  (n, x)), and we define Updatc(~ ,  x,  v) = P. [ak[y ~ v]/ak]. 

Returning from a procedure call simply consists in popping the most recent activation from 

the stack. 

5 A n  e q u i v a l e n t  o p e r a t i o n a l  s e m a n t i c s  

5.1 P r o c e d u r e  ca l l  s e m a n t i c s  

The domains used for this new semantics are listed below. In order not to use heavy notations, 

we shall refer, when necessary, to the former domains and functions using primes. 

Stack  = Act* 

Act  = Proc  × Control  x Con t ex t  

Con t ex t  = E n v  × Out  × S tore  

E n v  = Iden t  --+ Loc 

S tore  = Loc -* S g a l ±  

Out  = Loc ~ Loc 

Loc = 79(Ident) 

For each stack ~, E S tack  we use the notation ~lk = (Pk,ck,  (Ek,~k, ak)) where the third 

component of a local context wk E Out  is a new store-like function used to manage call-by- 

address parameters. 

The environment ¢n is local to procedure Pn, so we have to define the environment En : 

I d e n t  --* (IN x Loc)± binding any identifier accessible to Pn to its location: 

v= e Idcnt, Vk e [O,n] : ~.(=) = (~ ~ Pk) -~ (k = O) -~ ~,  ~'^~k)(~), 
(k,~k(x)) 

2See [ASU 86] Section 7.3 for more details about the access llnk. 

3See figure 2 for an example. 
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When Ek(x) # .L, it should be clear that E~(z) = (i, ei(x)), where i = A(k,x*). We can now 

define the local environment e,~+l pushed on top of the stack during a call from procedure Pn 

to procedure Pn+l by: 

e.+l(=) = (x • Local) ---* 

(z  • Value) 

(~ < P,,+~) --. 

(and en+l(x) = ¢ if x ~ Pn+l) 

{=}, (1) 
{=}, (2) 
A, (3) 

{y • A l ias :  (y - Pn+l) ^ (E,~(IIn+l(y))t2 = A)} (4) 

where A = En(IIn+l(x))12 

We say that a call-by-address formal parameter z - Pk+l aliases a location A if the environ- 

ment Ek of the calling procedure Pk binds the actual parameter IIk+l(X) to an address of the 

form (i, A), where i E £.(k). 

Case (3) refers to the situation where the formal parameter z aliases a location created by 

an enclosing procedure of P,~+I. A location is said to be created by procedure P,~+I in cases (1), 

(2), and (4). In case (3), the location is said to be handed to P,~+I. In case (4), the location A 

aliased by x has been created by a procedure Pk not accessible to P,+I. One can consider )~ as 

being "hidden" in the stack. The only way to update this location is to assign a call-by-address 

formal parameter that belongs to the location 6,,+1(x) defined in case (4), considered as a set. 

It can be shown by induction that for any stack: 

T h e o r e m  "/ For any location A such that e~-l(A) ~ 0, either A C_ Local, )~ C_ Value or A C 

Alias.  

Whenever e~-l(~) ~ ¢, A will be called a pseudo-location if A C_ Alias and an actual location 

otherwise. 

T h e o r e m  8 Let A be a location such that en~l(A ) ~ 0 and A C_ Alias.  Then: 

ak 6 / : ( n +  1) - {0} :(A = ek A V(x,y) • A s : Ek-l(IIk(x)) = Ek-l(IIk(y))) 

The integer k will be noted A(n + 1, A) by analogy with the previous definition of A. Theorem 

8 and Definition 5 enable the following definitions of Wn+l and an+l: 

~.+~(~) = (~ --- P.+~) ^ ( e ; h ( ~ )  # ¢) ^ (~ c Alias) -* E.  o II.+1(~h2, 
~.+~(~) = (~ = P.+~) ^ ( e ~ ( ~ )  # O) ^ (~ C Value) ~ H.+~(~), ± 

5.2 S t a c k  s t r u c t u r e  

The interpretation of a pseudo-location A in the local context (¢k,wk, ak) is the following: 

• If wk(A) = M then ak(A ) is meaningless, A t is the location of the calling procedure Pk-1 (or 

one of its enclosing procedures) aliased by A, and the identifiers in M are not accessible to 

the enclosing procedures of Pk. Moreover, A is the set of call-by-address formal parameters 
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p r o g r a m  Stack; 
va t  g : integer; 
p rocedure  Q(var ql, q2, q3 : integer); 

p rocedure  P(var pl, p2 : integer); 
va t  p3 : integer; 

begin 
{4} Q(p3, p3, q3); 

end; 
begin  

{5} . . .  

{3} P(ql, q2) 

end; 
p rocedure  K(var rl, r2, r3 : integer); 
begin 

{2} Q(rl, r2, r3) 
end; 
p rocedure  S(var sl : integer); 

vat  s2 : integer; 
begin  

{~} R(~l,~2,s2) 
end; 

begin 
{0} S(g) 
end. 

Procedure [ Ctrl ] Identifier z 

Prog.Q 5 ql q2 

Prog.Q.P 4 

Prog.Q 3 

Prog.Q.P 4 

Prog.Q 3 

Prog.R 2 

Prog.S 1 

Prog 0 

{ql~ q2} 
q~ {q3} 

Pl P2 {ql, q:} 
vs {w} 

ql q2 {ql, q2} 
q~ {qs} 
vl {g} 

P2 {q2, q3} 
.8 {p3} 
ql {g} 

q2 q3 {q~,q3} 
,I {g} 

r2 r3 {r~,r~} 
sl {g} 
8~ {~} 
g {g} 

¢ 
¢ 

{v3) 

¢ 
¢ 
¢ 
¢ 

{r2,,s},,, 
o 

{8~},, 
¢ 
0 
¢ 

R u n - t i m e  stack 

£(7) = {7,0} z(3) = {3,0} 
z(6) = {6,5,0} z(2) = {2,0) 
£(5) = {5,0} £(1) = {I, 0} 
£(4) = {4,3,0} £(0) = {0} 

Access links 

Figure 2: Run-time stack structure 

of the called procedure Pk bound to A by the environment ek. We shall see tha t  the pseudo- 

location A can be used as a temporary to store the value of these formal parameters  during 

the execution of the procedure body. 

• If  wk(A) = @ then A is still a pseudo-location, but it was created earlier by an enclosing 

procedure of Pk. Identifiers bound to A by ek can be seen as pure lexical aliases of the 

identifiers in A (considered as a set). 

An example of this stack structure is given in figure 2. Identifier names are written without 

their path  prefix for simplicity. 

The location given by the environment E ,  is an actual location (i.e. a location used to store 

a value) only for local variables and call-by-value parameters,  so we need to define a function 

Locate : (]IV x Loc) ~ (IN X Loc)j. giving the actual location to which ca~-by-address parameters  

axe really bound, by descending the pseudo-location string: 

Locate((k,A))  = A ~ P k  -* ( k = O )  ~ J_, Locate((A(k) ,A))  

A C Alias --* (k = O) -+ ±,  L o c a t e ( ( k -  1,wk(A))) 
(k,~) 



314 

Definition 9 The address of an identifier x is defined by: Address( (n, z) ) = Locate( E,~( x ) ) 

The Value and Update functions are easily defined from Address as in the former semantics. 

5.3 E q u i v a l e n c e  o f  t h e  two s e m a n t i c s  

In the former semantics, pk defined a set of trees over Ident, the roots of which were the 

local/global variables or the call-by-value formal parameters being aliased by the other call-by- 

address formal parameters in the tree. The idea behind the latter semantics is to lift these trees 

in order to gather call-by-address formal parameters of the same procedure having the same 

address into nodes - -  being called locations - - ,  while preserving the structure of each tree. A 

comparison between these two kinds of trees is given in figure 3. The actuais locations are drawn 

in a gray rectangle, whereas the pseudo-locations are drawn in a black rectangle. With this in 

mind, one can prove by induction the following important theorem. 

Theo r em 10 For any variable z <_ Pn: 

Addre88'((n, x)) = (k, y) ~ Addre88((n, ~)) = (k, {y}) 

This theorem shows that the actual locations are exactly the same in the two semantics. There- 

fore, it is not too difficult to see that the two semantics are equivalent. 

5.4 A n e w  p r o c e d u r e  call semantics 

The main theorem about the latter semantics is the following. 

Theorem 11 Let x ~ y be two variables, x < P,~ and y < Pn. Then: 

Addre88((n, x)) = Addre88((n, y)) ~=~ E,~(x) = En(y) 

The meaning of this theorem is that two variables accessible to the current procedure are 

aliases if and only if the environment binds them to the same location (or pseudo-location). In 

other words, one does not have do go down deep into the stack to know whether or not two 

identifiers share the same actual location. The reduced aliasing tree has lifted this information 

up to the current procedure activation. 

This implies that for a given stack context we can freely change the call-by-address binding 

into a kind of call-by-value-result binding without modifying the semantics of the language. 

Note that since the switch from one binding pattern to another is context-sensitive, it does 

not mean that call-by-address and call-by-value-result are equivalent. Pseudo-locations that 

were previously used as pointers to other locations will now be used as temporaries during the 

execution of the procedure body. Thanks to Theorem 11, there will be no memory conflict. 

Aliased locations will be updated when returning from the called procedure. 

6 Abs t rac t ing  stack sets 

In order to perform an abstract interpretation of our language, we must define an abstraction 
function 4 a : ( 7~( Stack ), C_, U, N) --, (Stack, if_, U, [q) giving, for each stack set S, a safe approxi- 

4See [Cousot 81]. 
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Prog.R 

Aliasing trees Lifted aliasing trees 

Figure 3: Stack structure in the two semantics 

mation of this set. This function must be isotone and continuous, that is: 

v(=,y) • r ( S t a c k )  2 : • c y = ~  ,K=) E_ ,~(y) 

VX C "P(Stack) : a( U X ) = Ua*(X) 

The idea behind the abstraction of a stack structure is to merge procedure calls having the 

same shape. This shape will be defined later, but one of its characteristics should obviously be 

the partition of the identifiers accessible to that procedure into sets of identifiers sharing the 

same location in the stack. 

All the information about the ca~ to procedure Pk is contained in the substack Zk which 

is the stack built using procedure activations corresponding to the stacks indexes in £(k)  (i.e. 

activations accessible to procedure Pk). Some activations are however accessible to both Pk and 

Pk,, namely thoses corresponding to the indexes in £ ( k ) n  ~(k') (which always contains 0). On 

the contrary, some activations of a substack ~k are hidden, that is they do not belong to any of 

the substacks ~ + 1 , - - . ,  ~ of the procedures called by Pk. These activations contain the values 

of the loca~ variables that will have to be restored when returning from the called procedure 

Pk+l. The substack ~k+l thus defines the shape of the procedure call and gives the values of 

the identifiers, but gives no information about the return point and about the values of the local 

variables of its calling procedures (except of course if Pk < Pk+l). A stack abstraction could 

therefore be the main substack ~ plus the abstraction of the set of all the other substacks, 

used to modelize the "history" of the stack. But the fact that the value of some locations are 

duplicated in the different substacks can be a problem to insure the semantic correctness of the 
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analysis. That  is the reason why we are going to "dissect" the stack into substacks using the sets 

Ln(k)  which are the (possibly empty) sets of indexes corresponding to the hidden activations of 
procedure Pk. 

T h e o r e m  12 The sets £n(k)  and £~,(k) are defined by: 

Vk e [1, n]: 

£,~(n) = £ ( n )  

£ ~ ( k - 1 )  = £ ( k - 1 ) - £ : ( k )  

/:~,(k - 1) = £ n ( k  - 1) IJ £ * ( k )  

The structure of the £n(k)  sets is essential to the semantic correctness of the abstraction. The 

key point is that  once the activation of level k has been "hidden" by its called procedure Pk+l 

(i.e. when A(k + 1) < k), then no further procedure can access directly this hidden activation, 

that  is : Vi E [k q- 1, n] : A(i) ~ k. Moreover, one can prove the following theorem. 

T h e o r e m  13 Let k < n and k' < n be such that Pk = Pk' and ek = ck, (where ck is the control 

point stored in the stack at level k). The sets f~(k) and £(k ' )  can be written: 

£ ( k )  = {k  = lM > . . .  > lo = O} 

£ ( k ' )  = {k'  = I'M > . . .  > l'0 = 0}  

Then either £,~(k) = £ , ( k ' )  = ~ or there exists an index  m < M such that: 

C . ( k )  = {k = IM > . . .  > l~}  

£n(k ' )  = (k '  = I'M > ' " >  l'm} 

The meaning of this theorem is that  whenever a given procedure calls the same procedure from 

the same control point (ok = ck,), its hidden activations are the same. For any k in [0, n] we are 

now going to define access functions that will be used to abstract the substack Ek. 

Def in i t ion  14 Let us call Identk the set of identifiers x being accessible to Pk (i.e. x < Pk), 

and Lock the set of locations such that )~ < Pk. Then for any identifier x, and for any location 

gk(x) = (x ¢ Identk)  -* ~, e^(k,=.)(x) 

~ k ( ~ )  = (~  ¢ Lock) -~ ¢, ~^(k,a)(a)  
O~(A) = (A CLock) V(A(k,A) ¢ £ ~ ( k ) )  -* _L, a^(k,x)(A) 

)~ we define: 

The definitions of gk and 0~k are not surprising. The test A(k, A) ~ f n(k) in the definition of 
- - } 1 ,  a k means that  if a location is also accessible to a called procedure, then the store should be set 

to ±,  which means that  all information about the content of this location is lost. Remember 

that  we want to dissect the stack and hence we do not want the values of the locations to he 

duplicated in the different substacks. This restriction will be justified later when talking about 

the semantic correctness of the abstract primitives. 

For each index k we can now define an abstract substack as (9k, v~). The first element 

gk = (Pk, ek, hk, gk,wk) is called the generalized control point. It contains the control point itself 
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but also describes the structure of the stack that  is, first, the partition of Identk  into sets of 

identifiers sharing the same location, and second, the locations that  will have to be updated 

when returning from the current procedure call. This generalized control point can be seen as a 

characteristic of the stack used to merge similar procedure activations when unfolding the call 

graph during the analysis. This merging will be defined below using an upper closure operator.  

The third element h/¢ of the generalized control point is called the history of the stack and 

is a finite abstraction of the control stack (co , . . . ,  ek- l / .  Different definitions can be used 5 and 

we can choose for instance hi = ( e k - O , . . . , e k - l l ,  with 0 > 0 being called the degree of the 

approximation. The parameter  0 can be used to increase the precision of the analysis by forcing 

the duplication of procedure Pk. 

At last, we have v~ = r/({gr ~}), where ~/is an abstraction function from the lattice (~(Loc  -* 

SValL) ,  U) onto the lattice (S-Tb'~, v).  It is usual in abstract  interpretation to abstract  the 

lattice P(Loc  ~ SVal) .  When Loc is finite, which is the case here, this lattice is isomorphic 

to 7~((SYal)m), where m = ILocl, and can be abstracted by SVal  m. WeU-known examples of 

such approximations for integer variables are the constant lattice, the integer range lattice, the 

linear inequalities lattice (see [CH 78]), the arithmetical congruences lattice (see [Granger 89]), 

and the linear congruences lattice (see [Granger 90]). 

Our problem here is that  some elements ~ are such that  the s e t / ~  = Loc - ( ~ ) - 1 ( { 1 } )  

is not equal to Loc. In this case, the abstract  store v~ can be considered as being an element of 

S Y a l  [/~] which is isomorphic to ff-V-~ m, where m = I/~1. It is then obvious that  Store can be 

represented by the lattice rLe~(Loc) SVal  [#]. 

However, one can show using Theorem 13 that  if gk = gh, then ~u~ = / ~ , .  Consequently, if 

we want to merge abstract  substacks having the same generalized control point (using the Pv 

operator defined hereunder), we can use in practice Store = (~e~'(Loc) SVal  [/~]).L. 

Def in i t ion  15 Let G be any set and V be a join operator over a lattice V.  We define the 

function Pv over the lattice P ( G  × V)  by: 

gi =g 

It is clear that Pv is an upper closure and consequently p v ( P ( G  x V)) is known to be a lattice 

for the join operator ~ defined by: 

V si = p,,( U si ) 
iE I  iE I  

This lattice is also isomorphic to the lattice : G --* V.  Therefore, i f  r E p v ( P ( G  x V)), the value 

v such that (g, v) • r will be noted r(g). 

Using this upper closure, we can now define the abstraction of a single stack using the function 

ao : S tack ~ Control × Re turn ,  where Return  = P(Contro l  × Store), defined by: 

V n = (g0, pv({ (gk ,  

5See for instance the call string approach in [Sharir 81] for examples of such approximations. 
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The abstraction function cr : P(S tack )  --* Stack is simply defined by extending a0 to P(S tack )  

and then normalizing using P~v : a = P~v o a~. Stack is thus a subset of P(Control  × Return)  

and is a lattice for the join operator U = ~. An element of Stack will be noted (g, r). 

7 A b s t r a c t  p r i m i t i v e s  

We are now going to abstract  the Call and Return  primitives. Let (g, r) be the current abstract  

stack. We use the following notations: 

g = ~ P , c , h , ~ , ~ /  

r = {(gi, ui)}iEl 

, ,  = r(g) E ~ - - ~ [ . ]  

The abstract  store v = v[p] thus corresponds to the current generalized control point g, and 

p is the set of locations accessible to procedure P.  In order to deal with the locations created 

during procedure calls, we will use the function A +t,_,u + : SVal  [p-] --+ S--V-~[# +] which takes 

and abstract  store defined o v e r / t -  and inserts the new locations in #+ - / ~ -  with undefined 

values. The function At,_~-#,+ does the same but assigns the value of the location ~ -  to the 

new locations. On the opposite, the function A~+,u_ : SVal  [it+] ~ SVal[p-]  forgets every 

information about the locations in #+ - # - .  A formal definition is given below. 

Def in i t i on  16 For any sets # -  C_ it +, let T(I~ +) be an upper approzimation of the lattice 

"P(Iz + --* SVal) ,  a ± and 7 ± being the abstraction and meaning functions. The functions A + 

A"+,u_, and A ~ " u  + are defined by: 

~x+ (P )  = ,~+({, ,  e (it+ ~ SVal) : % -  e : ( e ) } )  / t -  d.t+ 

A~+,,,_(p) = a-({%,- :a E ,,/+(e)}) 
zX~-#,+ (P) = a+({o- E (~+ --, SVal): %,- e "t-(P) ^V2~+ E (it+ - / t - ) :  a(,~+) = a(.~-)}) 

7 . 1  P r o c e d u r e  c a l l s  

Let us call {g', r ~} the abstract  stack after the procedure call. The generalized control point 

g~ = (P  ~, c~, h ~, g~, ~ )  is easily determined using the formal parameter  binding function II, and 

the environment ~. We call # '  the set of locations accessible to P~. We have # '  = #sUpvUPAUPL,~ ~ ~ ' 

where P3 = #$ contains the locations shared between procedure P and procedure P~, namely the 

locations accessible to plo (for pl° < p by construction), and t i - #v ,  PA and p~ are the locations 
that  are local to Pt and respectively belong to Value, Alias and Local. 

The second element r ~ is defined by: 

r' = p,,(r[/g, ~/ / /g," / ]  U {/g', v'/}) 

The first abstract  store ~ is what remains of the abstract  store v after the call to procedure 

P~. Remember that  all the shared locations in #$ must be "erased" to be consistent with our 

abstraction ~. This is achieved through the use of A ~ , ~ ,  where PH = P -- PS is the set of 

"hidden" locations of procedure P.  
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In order to simplify the theory, we only allow actual parameters to be identifiers, even for 

call-by-value formal parameters 6. We can therefore model the call by a function 7r binding formal 

parameters locations in p~ = p~ U P~4 U p~, to locations in p. This function ~r is one to one from 

#~4 onto/ZH by construction, and is the identity over p~ = #s.  We thus define fi~ as being any 

of the largest subsets of #~ for which ~r is one to one over ~ = #~ U P~4 U / ~ .  

The wdue v ~ is the abstract store of procedure pI  after the call. It is obtained from v[#] in 

three steps. The first step consists in substituting in p the aliased locations ~ E r ( / ~ )  by their 

alias ~r-l(~) and then by erasing the locations in p that are not aliased by using A~,r(~).  

The second step consists in the insertion of the locations in #~ - ~ ,  = #~ - / ~ .  For every 

location )~ E/2~, let us call ~ the set of locations in p~ - / ~  bound to 7r(~) by ~r. Their insertion 

is achieved by using A ~ u~,ubu~" 
At last, the third step consists in the insertion of the locations in p~ by using A+~,u,. 

The elements of r I corresponding to generalized control points different from g and gl remain 

unchanged. This can be justified by the following theorem which shows that only the substack 

~ is altered during a procedure call 

T h e o r e m  17 For any inde• k in [O,n-  1] : £.+1(k) = £ . (k )  

7.2 R e t u r n i n g  f r o m  p r o c e d u r e  cal ls  

We are now going to return from the call to procedure P ' .  First of all, we must notice that 

there might be several abstract substacks in r '  leading to gt when called, for the history of these 

substacks has been abstracted. Let us choose one of them and call it (g, v). The abstract stack 

after returning will be: 

<g+, ,-'[<g+, v+)/<g', ¢)1) 
where <g+, v+ I is the new current abstract substack, and g+ = g[c+/c], c + being the control 

point foUowing c in the source code. The new abstract store v + = vl A v~ is defined as follows. 
+ The abstract store vl = A _~(~),~ o A~,~_~(~)(v) is simply the store that was pushed on 

the stack, from which every information about the aliased locations in ~'(#~4) has been removed. 

Only the values of the "hidden locations" remain. 

The abstract store v~ represents the values of the aliased locations after returning from the 

called procedure P ' .  It is obtained from v ~ in three steps. First, v~ = A-, , u ' (v') has lost 
'US /~A 

every information about the call-by-value formal parameters and local variables of P'. Then by 

substituting the aliases )~t E #~t by their aliased location ~(~') in P, we get v~. And at last we 

get v~ by inserting the missing "hidden" locations, with undefined values, using A+su~(~), ~. 

8 I m p l e m e n t a t i o n  

Based on the previous theoretical work a system called SYNTOX has been developed. It con- 

sists of 450 Kbytes of C source code and has an optional user-friendly interface running under 

X/Windows. Its purpose is to analyze the value range of integer variables in Pascal programs. 

6This transformation is always possible using temporary variables. 
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Any program can be analyzed, provided that it does not use the ' ~ '  operator (address o f ) ,  and 

that it does not use procedurals parameters. Jumps to local labels are supported, as well as long 

j umps  - -  that is jumps to labels outside the current procedure - -  although this feature has not 

been covered in the present paper. 

The system performs forward and backward analyses until it reaches a fixpoint. Each analysis 

performs a widening and a narrowing pass, which is necessary when using a very large lattice such 

as the integer range lattice. We didn't say however how the widening operation is achieved when 

t~]klug about the abstraction method. This is a problem though, for the resolution strategy used 

in SYNTOX is not to solve a system of semantic equations, but rather to dynamically generate 

new equations. An algorithm has been developed, but it is beyond the scope of the present 

paper and will be exposed later. 

Assertions such as {~ x in [0,10] ~} can be inserted into the Pascal source code to impose 

that x be in the range [0, 10] at the corresponding control point. This assertion is taken into 

account during the analysis. The forward analysis provides information on how an assertion 

propagates to the end of the program, whereas the backward analysis determines necessary - -  

but not sufficient - -  conditions to be satisfied at the beginning of the program to insure that this 

assertion is satisfied at run time. As a consequence, the backward analysis determines necessary 

conditions for the program to terminate (provided of course that the state at the end of the 

program is not equal to .l_). Examples are given below. 

The results given by SYNTOX could be used by compilers to eliminate most of the run time 

tests on array bounds. Such an approach has been taken by a company such as Alsys  which, by 

using an intraprocedural analysis, has been able to eliminate almost 80 per cent of the run time 

tests generated by its Ada compiler. 

9 Examples 

MacCarthy's 91 function provides an good example of the power of backward analysis. If the 

assertion {~ x <5 101 ~} is inserted in the Pascal source code at control point {1}, SYNTOX 

will prove that x = 91 at control point {2}. But on the contrary, if the assertion {~ x -- 91 ~} 

is inserted at control point {2}, SYNTOX will "back propagate" the condition that x E [lo, 101] 

at control point {1}. This kind of reasonning about programs properties can be very helpful 

for program debugging. The analysis time for this example was roughly 4.2 seconds user time 

on a Sun 3/60. Two forward analyses and one backward analysis were done before reaching a 

fixpoint, each analysis including a widening pass and a narrowing pass. 

Another example, freely adapted from [Banning 79] is given in figure 4. For each procedure, 

we have given every possible partition of the set of identifiers into sets of identifiers sharing the 

same location. For each pseudo-location, the right arrow indicates the location being aliased. It 

can be seen that even a very simple program can generate very complicated sets of aliases. The 

analysis time for this example was roughly 10 seconds. 



321 

program Aliases; 
var x, y : integer; 
procedure Pl(var xl, yl : integer); 
begin 

if xl  <: yl then xl :-- 5 
else Pl(yl, xl) 

end; 
procedure P2(var x2 : integer); 

vat  y2, z2 : integer; 
procedure P3(var x3 : integer); 

vat  y3 : integer; 
begin 

if z2 = y then P2(x3) 
else P2(y); 
y3 := y2 

end; 
begin 

if y2 = 5 then P3(y) 
else if y2 > 5 then P3(x2); 
Pl(x2, x); y2 := x2 

end; 
procedure P0; 

vat x0 : integer; 
begin 

P2(x); P2(x0); Pl(x, y); 
end; 

begin 
PO 

end. 

[{X} {y} {xO} I 

P r o c e d u r e  PO 

{x, yl} {y} {xl}--*{yl} 
{x, xl} {y} {yl}--+{xl} 
{x, yl} {y} {xl}--*{x2} 

{x, xl, yl} {y} 
{x, xl} {y, yl} 
{x, yl} {y, xl} 

P r o c e d u r e  P1 

{x} {y} {x2}--,{x2} {y2} {z2} 
{x} {y} {x2}--,{x0} {y2} {z2} 
{x} {y, x2} {y2} {z2} 
{x, x2} {y} {y2} {z2} 

P r o c e d u r e  P2 

{x} {y} {x2, x3}--+{x2} {y2} {z2} {y3} 
{x) {y, x3} {x2}--+{x2} {y2} {z2} {y3} 
{x} {y} {x2, x3}--+{xO} {y2} {z2} {y3} 
{x} {y, x3} {x2}--+{xO} {y2} {z2} {y3} 

{x, x2, x3} {y} {y2} {z2} {y3} 
{x} {y, x2, x3} {y2} {z2} {y3} 
{x, x2} {y, x3} {y2}  {z2} {y3} 

Procedure P3 

Figure 4: Partitionning into alias sets 

I0 Conclusion 

Several attempts have been made to provide a framework for the abstract interpretation of 

language s with procedures and recursivity. Patrick Cousot in [Cousot 78] studied the case of 

recursive procedures, but with a language that used the call-by-value-result parameter pass- 

ing scheme, and that did not have nested procedures. Other people have developed either 

"ad-hoc algorithms" or abstract interpretations to find aliases of variables in Pascal programs 

([Banning 79]), or in higher order functional languages with recursivity and call-by-reference, 

but without nested procedures ([Demers 87]). They did not propose however a framework for 

the abstract interpretation of their languages. The reason why they could not do so is that, as 

we saw, the main problem to be solved is not to determine the set of aliases of a variable, but 

to determine all the possible partitions of the variables lexically visible from a procedure into 
variables sharing the same location. 

We proposed in this article a framework for designing easily customizable abstract interpre- 

tations of Pascal-like languages. This customization is a great improvement over the preceding 

works, for there is no need to provide a soundness theorem for any new abstract interpreta- 

tion. The abstraction method we proposed is highly "tunable", as emphasized in [Jones 82], 
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and can be designed to get an abstract interpretation of the desired precision. Moreover, the 
operational approach we have taken should make the implementation of semantic analyzers for 
Pascal reasonably easy. 

A natural extention to the present work is to study the full abstract interpretation of the 
Pascal language, with procedural parameters. Theoretical results ([Clarke 77, Clarke 84]) show 

that it should be somewhat more difficult. 
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